

Graphs with Large Geodetic Number

Hossein Abdollahzadeh Ahangar ${ }^{\text {a }}$, Saeed Kosari ${ }^{\text {b }}$, Seyed Mahmoud Sheikholeslami ${ }^{\text {b }}$, Lutz Volkmann ${ }^{\text {c }}$
${ }^{a}$ Department of Basic Science, Babol University of Technology, Babol, I.R. Iran
${ }^{b}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran
${ }^{c}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract

For two vertices u and v of a graph G, the set $I[u, v]$ consists of all vertices lying on some $u-v$ geodesic in G. If S is a set of vertices of G, then $I[S]$ is the union of all sets $I[u, v]$ for $u, v \in S$. A subset S of vertices of G is a geodetic set if $I[S]=V$. The geodetic number $g(G)$ is the minimum cardinality of a geodetic set of G. It was shown that a connected graph G of order $n \geq 3$ has geodetic number $n-1$ if and only if G is the join of K_{1} and pairwise disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}$, that is, $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots K_{n_{r}}\right)+K_{1}$, where $r \geq 2, n_{1}, n_{2}, \ldots, n_{r}$ are positive integers with $n_{1}+n_{2}+\ldots+n_{r}=n-1$. In this paper we characterize all connected graphs G of order $n \geq 3$ with $g(G)=n-2$.

1. Introduction

Throughout this paper, G is a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). We refer the reader to the book [17] for graph theory notation and terminology not defined here. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. A vertex v is called a simplicial vertex in a graph G if the subgraph induced by its neighbors is complete. For vertices x and y in a connected graph G, the distance $d_{G}(x, y)$ is the length of a shortest $x-y$ path in G. For a vertex x of G, the eccentricity $e_{G}(x)$ is the distance between x and a vertex farthest from x. The maximum eccentricity among the vertices of G is the diameter, diam (G). An $x-y$ path of length $d_{G}(x, y)$ is called an $x-y$ geodesic. The geodetic interval $I[x, y]$ consists of x, y and all vertices lying in some $x-y$ geodesic of G, and for a nonempty subset S of $V(G)$, we define $I[S]=\cup_{x, y \in S} I[x, y]$.

A subset S of vertices of G is a geodetic set if $I[S]=V$. The geodetic number $g(G)$ is the minimum cardinality of a geodetic set of G. A $g(G)$-set is a geodetic set of G of size $g(G)$. The geodetic sets of a connected graph were introduced by Harary, Loukakis and Tsouros [8], as a tool for studying metric properties of connected graphs. It was shown in [1] that the determination of $g(G)$ is an NP-hard problem and its decision problem is NP-complete. The geodetic number and its variants have been studied by several authors (see for example [1,5-7, 9-16, 18]). Clearly, a connected graph G of order $n \geq 2$ has geodetic number n if and only if $G=K_{n}$. It was shown in [3] that a connected graph G of order $n \geq 3$ has geodetic number $n-1$ if and only if G is

[^0]the join of K_{1} and pairwise disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r} r}$, that is, $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots K_{n_{r}}\right)+K_{1}$, where $r \geq 2, n_{1}, n_{2}, \ldots, n_{r}$ are positive integers with $n_{1}+n_{2}+\ldots+n_{r}=n-1$.

The purpose of this paper is to characterize all connected graphs G of order $n \geq 3$ with $g(G)=n-2$.
We make use of the following results in this paper.
Observation 1.1. ([4]) Every geodetic set of a graph contains its simplicial vertices.
Observation 1.2. Every connected graph G of order n different from K_{n}, has a geodetic set S of size $n-1$ such that the vertex not in S, belongs to a geodesic path of length two.
Proof. Let G be a connected graph of order n different from K_{n}. Since $G \neq K_{n}, G$ has three vertices u, v and w such that $u v, u w \in E(G)$ and $v w \notin E(G)$ (see Exercise 1.6.14 in [2]). It follows that $d_{G}(v, w)=2$ and $u \in I[v, w$] and hence $S=V(G)-\{u\}$ is a geodetic set of G with desired property.

Observation 1.3. Let G be a connected graph of order n with $g(G) \leq n-2$ and let u be an arbitrary vertex of G. Then G has a geodetic set S of size $n-1$ containing u such that the vertex not in S, belongs to a geodesic path of length two.

Proof. If there is a vertex v at distance 2 from u and $w \in N(u) \cap N(v)$, then $V(G)-\{w\}$ is a geodetic set of G with desired property. Thus, we assume u is adjacent to all vertices of G. Since $g(G) \leq n-2, G-u$ has a component H that is not complete. By Observation 1.2, H has a geodetic set S of size $|V(H)|-1$ such that the vertex not in S, say x, belongs to a geodesic path of length two. Then obviously $V(G)-\{x\}$ is a geodetic set of G with desired property.

Proposition 1.4. Let G be a connected graph and H be a connected induced subgraph of G that is not complete. If

1. $G-V(H)$ has a cycle $\left(v_{1} v_{2} v_{3} v_{4}\right)$ in which $v_{1} v_{3} \notin E(G)$, or
2. $G-V(H)$ has a path $v_{1} v_{2} v_{3} v_{4}$ in which $d_{G}\left(v_{1}, v_{4}\right)=3$ and there is no edge between the sets $\left\{v_{1}, v_{4}\right\}$ and $V(H)$,
then $g(G) \leq n-3$.
Proof. By Observation 1.2, H has a geodetic set S of size $|V(H)|-1$ such that the vertex not in S, say x, belongs to a (y, z)-geodesic path where $d_{H}(y, z)=2$. Clearly $d_{G}(y, z)=2$. If (1) holds, then clearly $d_{G}\left(v_{1}, v_{3}\right)=2$ and $\left\{v_{2}, v_{4}\right\} \subseteq I\left[v_{1}, v_{3}\right]$. It follows that $V(G)-\left\{x, v_{2}, v_{4}\right\}$ is a geodetic set of G that implies $g(G) \leq n-3$. If (2) holds, then $x \in I[y, z]$ and $v_{2}, v_{3} \in I\left[v_{1}, v_{4}\right]$ and so $V(G)-\left\{x, v_{2}, v_{3}\right\}$ is a geodetic set of G implying that $g(G) \leq n-3$.

2. Graphs with Large Geodetic Number

Chartrand, Harary and Zhang [4] established the following upper bound on geodetic number of a graph in terms of its order and diameter.

Theorem A. If G is a nontrivial connected graph of order n and diameter d, then $g(G) \leq n-d+1$.
Corollary 2.1. If G is a connected graph of order n with $g(G)=n-i$, then $\operatorname{diam}(G) \leq i+1$.
In what follows, we characterize all graphs G of order $n \geq 3$ with $g(G)=n-2$. By Corollary 2.1 we need to consider connected graphs G for which $\operatorname{diam}(G)=2$ or 3 . First we introduce four families of graphs.

Let \mathcal{F}_{1} be the collection of all graphs obtained from a cycle $C_{4}=\left(v_{1} v_{2} v_{3} v_{4}\right)$ and complete graphs $K_{n_{1}}, \ldots, K_{n_{r}}$ (possibly no complete graphs) by joining v_{1} and v_{2} to all vertices of complete graphs. Clearly $C_{4} \in \mathcal{F}_{1}$.

Let \mathcal{F}_{2} be the collection of all graphs obtained from a triangle $K_{3}=u v w$ and complete graphs $K_{n_{1}}, \ldots, K_{n_{r}}$ (possibly no complete graphs of this kind), $K_{m}, K_{m_{1}}, \ldots, K_{m_{s}}$, by joining u to all vertices of complete graphs, v to all vertices of $K_{m_{1}}, \ldots, K_{m_{s}}$ and w to the vertices of K_{m}.

Suppose \mathcal{F}_{3} is the collection of all graphs obtained from $K_{2}=u v$ and two classes of complete graphs $K_{n_{1}}, \ldots, K_{n_{r}}$ (possibly no complete graphs of this kind) and $K_{m_{1}}, \ldots, K_{m_{s}}$ (at least two complete graphs of this kind if there is no complete graph of the first kind), by joining u to all vertices of complete graphs and v to all vertices of $K_{m_{1}}, \ldots, K_{m_{s}}$.

Finally assume that \mathcal{F}_{4} is the collection of all graphs obtained from $K_{2}=x y$ and complete graphs $K_{n_{1}}, \ldots, K_{n_{r}}, K_{m_{1}}, \ldots, K_{m_{s}}$ and $K_{l_{1}}, \ldots, K_{l_{t}}$ (may be no complete graph of this kind) by joining x and y to all vertices of $K_{l_{1}}, \ldots, K_{l_{t}}$ and joining x to all vertices of $K_{n_{1}}, \ldots, K_{n_{r}}$ and y to all vertices of $K_{m_{1}}, \ldots, K_{m_{s}}$.

Theorem 2.2. Let G be a connected graph of order n with $\operatorname{diam}(G)=2$. Then $g(G)=n-2$ if and only if $G \cong C_{5}$ or $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$.
Proof. If $G=C_{4}$ or $G=C_{5}$, then clearly $g(G)=n-2$. If $G \in \mathcal{F}_{3}$ then by Observation $1.1, g(G)=n-2$ because every vertex of $V(G)-\{u, v\}$ is a simplicial vertex of G. Now let $G \in \mathcal{F}_{1}-\left\{C_{4}\right\}$ and S be a $g(G)$-set. By Observation 1.1, $V(G)-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq S$. If $v_{3}, v_{4} \in S$, then $g(G)=|S| \geq n-2$. If $v_{3} \notin S$ (the case $v_{4} \notin S$ is similar), then we must have $v_{2}, v_{4} \in S$ implying that $g(G)=|S| \geq n-2$. On the other hand, $V(G)-\left\{v_{1}, v_{2}\right\}$ is a geodetic set of G that implies $g(G)=n-2$. Finally let $G \in \mathcal{F}_{2}$ and S be a $g(G)$-set. By Observation 1.1, $V(G)-\{u, v, w\} \subseteq S$. Since $w \notin I\left[w_{1}, w_{2}\right]$ for each $w_{1}, w_{2} \in V(G)-\{u, v, w\}$, we deduce that $V(G)-\{u, v, w\} \varsubsetneqq S$ and so $g(G)=|S| \geq n-2$. On the other hand, $V(G)-\{u, v\}$ is a geodetic set of G that yields $g(G)=n-2$.

Conversely, let G be a connected graph of order n, $\operatorname{diam}(G)=2$ and $g(G)=n-2$. Suppose that $S=V(G)-\left\{x_{1}, x_{2}\right\}$ is a $g(G)$-set. Since, $x_{i} \notin S$, there exists a $u_{i}-v_{i}$ geodesic path containing x_{i} for $i=1,2$. Further, let among the $g(G)$-sets S, the one be selected such that $\left|\left\{u_{1}, v_{1}\right\} \cap\left\{u_{2}, v_{2}\right\}\right|$ is as large as possible and $x_{1} x_{2} \notin E(G)$ if possible. We consider two cases:
Case 1: $\left|\left\{u_{1}, v_{1}\right\} \cap\left\{u_{2}, v_{2}\right\}\right|=2$.
We assume that $u_{1}=u_{2}$ and $v_{1}=v_{2}$. Then $\left\{x_{1}, x_{2}\right\} \subseteq N\left(u_{1}\right) \cap N\left(v_{1}\right)$. On the other hand, since $V(G)-\left(N\left(u_{1}\right) \cap\right.$ $\left.N\left(v_{1}\right)\right)$ is a geodetic set of G and since $g(G)=n-2$, we deduce that

$$
\begin{equation*}
N\left(u_{1}\right) \cap N\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\} . \tag{1}
\end{equation*}
$$

If $n=4$, then $G=C_{4}$ and hence $G \in \mathcal{F}_{1}$. Let $n \geq 5$. Consider the following subcases.
Subcase 1.1. $x_{1} x_{2} \notin E(G)$.
Then $d_{G}\left(x_{1}, x_{2}\right)=2$. An argument similar to that described above, we obtain

$$
\begin{equation*}
N\left(x_{1}\right) \cap N\left(x_{2}\right)=\left\{u_{1}, v_{1}\right\} . \tag{2}
\end{equation*}
$$

Let w be an arbitrary vertex in $V(G)-\left\{u_{1}, v_{1}, x_{1}, x_{2}\right\}$. Since $g(G)=n-2, w$ must be adjacent to some vertex in $\left\{u_{1}, v_{1}, x_{1}, x_{2}\right\}$. We may assume $w \in N\left(u_{1}\right) \backslash\left\{x_{1}, x_{2}\right\}$. It follows from $N\left(u_{1}\right) \cap N\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and the fact $d_{G}\left(w, v_{1}\right) \leq 2$ that $w v_{1} \notin E(G)$ and v_{1} and w have a common neighbor, say y. If $y \notin\left\{x_{1}, x_{2}\right\}$, then $V(G)-\left\{x_{1}, x_{2}, y\right\}$ is a geodetic set of G which is a contradiction. Therefore $y \in\left\{x_{1}, x_{2}\right\}$ and hence $w \in N\left(x_{1}\right)$ or $w \in N\left(x_{2}\right)$. By (2), $w \in N\left(x_{1}\right) \backslash N\left(x_{2}\right)$ or $w \in N\left(x_{2}\right) \backslash N\left(x_{1}\right)$. We claim that $N\left(u_{1}\right)-\left\{x_{1}, x_{2}\right\} \subseteq N\left(x_{1}\right) \backslash N\left(x_{2}\right)$ or $N\left(u_{1}\right)-\left\{x_{1}, x_{2}\right\} \subseteq N\left(x_{2}\right) \backslash N\left(x_{1}\right)$. Suppose $w_{1} \in N\left(u_{1}\right) \cap\left(N\left(x_{1}\right) \backslash N\left(x_{2}\right)\right)$ and $w_{2} \in N\left(u_{1}\right) \cap\left(N\left(x_{2}\right) \backslash N\left(x_{1}\right)\right)$. If $w_{1} w_{2} \in E(G)$, then $x_{2} \in I\left[v_{1}, w_{2}\right]$ and $\left\{u_{1}, w_{1}\right\} \subseteq I\left[x_{1}, w_{2}\right]$ that implies $V(G)-\left\{x_{2}, w_{1}, u_{1}\right\}$ is a geodetic set of G, a contradiction. Let $w_{1} w_{2} \notin E(G)$. Then $u_{1} \in I\left[w_{1}, w_{2}\right], x_{1} \in I\left[w_{1}, v_{1}\right]$ and $x_{2} \in I\left[w_{2}, v_{1}\right]$ and so $V(G)-\left\{x_{1}, x_{2}, u_{1}\right\}$ is a geodetic set of G, a contradiction. Assume, without loss of generality, that

$$
\begin{equation*}
N\left(u_{1}\right) \backslash\left\{x_{1}, x_{2}\right\} \subseteq N\left(x_{1}\right) \backslash N\left(x_{2}\right) . \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
N\left(x_{1}\right) \backslash\left\{u_{1}, v_{1}\right\} \subseteq N\left(u_{1}\right) \backslash N\left(v_{1}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(v_{1}\right) \backslash\left\{x_{1}, x_{2}\right\} \subseteq N\left(x_{1}\right) \backslash N\left(x_{2}\right) \text { or } N\left(v_{1}\right) \backslash\left\{x_{1}, x_{2}\right\} \subseteq N\left(x_{2}\right) \backslash N\left(x_{1}\right) . \tag{5}
\end{equation*}
$$

Next we show that $\operatorname{deg}\left(v_{1}\right)=2$. Suppose $z \in N\left(v_{1}\right)-\left\{x_{1}, x_{2}\right\}$. By (5), we deduce that $z x_{1} \in E(G)$ and $z x_{2} \notin E(G)$ or $z x_{1} \notin E(G)$ and $z x_{2} \in E(G)$. First let $z x_{1} \in E(G)$ and $z x_{2} \notin E(G)$. By (1), $w \neq z$. If $w z \in E(G)$, then $V(G)-\left\{x_{1}, x_{2}, w\right\}$ is a geodetic set of G, and if $w z \notin E(G)$, then $u_{1} \in I\left[w, x_{2}\right]$ by (3), $x_{1} \in I[w, z]$ and $v_{1} \in I\left[x_{2}, z\right]$ and so $V(G)-\left\{u_{1}, v_{1}, x_{1}\right\}$ is a geodetic set of G, a contradiction. Now let $z x_{1} \notin E(G)$ and $z x_{2} \in E(G)$. If $w z \in E(G)$ then we get a contradiction as above. Let $w z \notin E(G)$. Then w and z have a common neighbor y not in $\left\{x_{1}, x_{2}\right\}$ and so $u_{1} \in I\left[w, x_{2}\right]$ by (3), $y \in I[w, z]$ and $v_{1} \in I\left[x_{1}, z\right]$. This implies that $V(G)-\left\{u_{1}, v_{1}, y\right\}$ is a geodetic set of G, a contradiction. Thus $\operatorname{deg}\left(v_{1}\right)=2$. By symmetry, we must have $\operatorname{deg}\left(x_{2}\right)=2$. Since $g(G)=n-2$, we deduce from Proposition 1.4 that the components of $G\left[V-\left\{u_{1}, v_{1}, x_{1}, x_{2}\right\}\right]$ are complete graphs and hence $G \in \mathcal{F}_{1}$.

Subcase 1.2. $\quad x_{1} x_{2} \in E(G)$.
Consider the components of $G-\left\{x_{1}, x_{2}\right\}$. Since $g(G)=n-2$, we conclude from Proposition 1.4 that the components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1} are complete graphs.

Now let $H_{u_{1}}$ and $H_{v_{1}}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ containing u_{1} and v_{1}. Clearly, $H_{u_{1}} \cap H_{v_{1}}=\emptyset$, otherwise u_{1} and v_{1} must have a common neighbor in $H_{u_{1}}$, a contradiction. Thus $H_{u_{1}}$ and $H_{v_{1}}$ are disjoint. If $g\left(H_{u_{1}}\right) \leq\left|V\left(H_{u_{1}}\right)\right|-2$ (the case $g\left(H_{v_{1}}\right) \leq\left|V\left(H_{v_{1}}\right)\right|-2$ is similar), then by Observation 1.3, we can choose a geodetic set S of $H_{u_{1}}$ containing u_{1} and size $\left|V\left(H_{u_{1}}\right)\right|-1$ such that the vertex not in S, say a, belongs to a $x-y$ geodesic path where $x, y \in S$ and $d_{G}(x, y)=2$. Then obviously $V(G)-\left\{a, x_{1}, x_{2}\right\}$ is a geodetic set of G of size at most $n-3$ which is a contradiction. Hence $g\left(H_{u_{1}}\right) \geq\left|V\left(H_{u_{1}}\right)\right|-1$ and $g\left(H_{v_{1}}\right) \geq\left|V\left(H_{v_{1}}\right)\right|-1$ implying that $H_{u_{1}}$ and $H_{v_{1}}$ are complete graphs or join of K_{1} and at least two pairwise disjoint complete graphs where u_{1} and v_{1} are adjacent to all vertices of $H_{u_{1}}$ and $H_{v_{1}}$, respectively (cf. [3]).

Let $w \neq u_{1}$ be an arbitrary vertex of $H_{u_{1}}$. Since $w v_{1} \notin E(G)$ and $\operatorname{diam}(G)=2$, we have $d_{G}\left(v_{1}, w\right)=2$. If v_{1} and w have a common neighbor z not in $\left\{x_{1}, x_{2}\right\}$, then $V(G)-\left\{x_{1}, x_{2}, z\right\}$ is a geodetic set of G which is a contradiction. Therefore, we may assume that $w x_{1} \in E(G)$. We show that $V\left(H_{u_{1}}\right) \subset N\left(x_{1}\right)$. Suppose $H_{u_{1}}$ has a vertex y which is not adjacent to x_{1}. As above we must have $x_{2} y \in E(G)$. If $w y \notin E(G)$, then $V(G)-\left\{u_{1}, x_{1}, x_{2}\right\}$ is a geodetic set of G and if $w y \in E(G)$, then $V(G)-\left\{u_{1}, w, x_{2}\right\}$ is a geodetic set of G, a contradiction. Hence $V\left(H_{u_{1}}\right) \subset N\left(x_{1}\right)$. If $H_{u_{1}}$ has a vertex $z \neq u_{1}$ adjacent to x_{2}, then as above we have $V\left(H_{u_{1}}\right) \subset N\left(x_{2}\right)$. Thus either $V\left(H_{u_{1}}\right)-\left\{u_{1}\right\} \subset N\left(x_{1}\right)-N\left(x_{2}\right)$ or $V\left(H_{u_{1}}\right) \subset N\left(x_{1}\right) \cap N\left(x_{2}\right)$. Similarly, $V\left(H_{v_{1}}\right)-\left\{v_{1}\right\} \subset N\left(x_{1}\right)-N\left(x_{2}\right)$, $V\left(H_{v_{1}}\right)-\left\{v_{1}\right\} \subset N\left(x_{2}\right)-N\left(x_{1}\right)$ or $V\left(H_{v_{1}}\right) \subset N\left(x_{1}\right) \cap N\left(x_{2}\right)$.
Claim. $G-\left\{x_{1}, x_{2}\right\}$ has at most one component H of order at least 2 with $z \in V(H)$ such that $z \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$ and $V(H)-\{z\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ or $V(H)-\{z\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$.
Proof. Let H_{1} and H_{2} be the components of $G-\left\{x_{1}, x_{2}\right\}$ of order at least 2 with $z_{i} \in V\left(H_{i}\right)$ such that $z_{i} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$ and $V\left(H_{i}\right)-\left\{z_{i}\right\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ or $V\left(H_{i}\right)-\left\{z_{i}\right\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$ for $i=1,2$. Let $z_{i}^{\prime} \in V\left(H_{i}\right)$ for $i=1,2$. If $V\left(H_{i}\right)-\left\{z_{i}\right\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ for $i=1,2$, then $x_{1} \in I\left[z_{1}^{\prime}, z_{2}^{\prime}\right], z_{1} \in I\left[z_{1}^{\prime}, x_{2}\right], z_{2} \in I\left[z_{2}^{\prime}, x_{2}\right]$ and hence $V(G)-\left\{x_{1}, z_{1}, z_{2}\right\}$ is a geodetic set of G, a contradiction. If $V\left(H_{1}\right)-\left\{z_{1}\right\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ and $V\left(H_{2}\right)-\left\{z_{2}\right\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$, then $d_{G}\left(z_{1}^{\prime}, z_{2}^{\prime}\right)=3$ which is a contradiction again. The other cases also lead to a contradiction.

First assume that $G-\left\{x_{1}, x_{2}\right\}$ has no component H of order at least 2 with $z \in V(H)$ such that $z \in$ $N\left(x_{1}\right) \cap N\left(x_{2}\right)$ and $V(H)-\{z\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ or $V(H)-\{z\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$. Then $V\left(H_{u_{1}}\right) \subset N\left(x_{1}\right) \cap N\left(x_{2}\right)$ and $V\left(H_{v_{1}}\right) \subset N\left(x_{1}\right) \cap N\left(x_{2}\right)$. It will now be shown that $H_{u_{1}}$ and $H_{v_{1}}$ are complete graphs. Assume to the contrary that $H_{u_{1}}$ is not complete (the other case is similar). Since $g\left(H_{u_{1}}\right) \geq n-1$, we have $g\left(H_{u_{1}}\right)=n-1$. Then $H_{u_{1}}=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots K_{n_{r}}\right)+K_{1}$, where $r \geq 2, n_{1}, n_{2}, \ldots, n_{r}$ are positive integers with $n_{1}+n_{2}+\ldots+n_{r}=n-1$ and u_{1} is adjacent to all vertices of $H_{u_{1}}$. Let z_{1} and z_{2} belong to different components of $H_{u_{1}}-u_{1}$. Then $u_{1} \in I\left[z_{1}, z_{2}\right]$ and $x_{1}, x_{2} \in I\left[z_{1}, v_{1}\right]$ that implies $V(G)-\left\{u_{1}, x_{1}, x_{2}\right\}$ is a geodetic set of G, a contradiction. Let H be a component of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1}, if any. Since $d_{G}\left(V(H), u_{1}\right) \leq 2$, we must have $z x_{1} \in E(G)$
or $z x_{2} \in E(G)$ for each $z \in V(H)$. Assume, without loss of generality, that H has a vertex x that is adjacent to x_{1}.

We show that $V(H) \subset N\left(x_{1}\right)$. Assume first $|V(H)| \geq 3$. Suppose H has a vertex y which is not adjacent to x_{1}. Since $d_{G}\left(y, u_{1}\right)=2$, we must have $y x_{2} \in E(G)$. If H has a vertex $z \neq x$ which is adjacent to x_{1}, then $x, z \in I\left[y, x_{1}\right], x_{2} \in I\left[y, u_{1}\right]$ which leads to a contradiction. This implies that $V(H)-\{x\} \subseteq N\left(x_{2}\right)$. If $x x_{2} \notin E(G)$, then $V(H)-\{x\} \subseteq I\left[x, x_{2}\right]$ and $x_{1} \in I\left[x, v_{1}\right]$, implying that $V(G)-\left(\left\{x_{1}\right\} \cup(V(H)-\{x\})\right)$ is a geodetic set of G which is a contradiction. Hence $x \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$ and $V(H)-\{x\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$ contradicting the assumption. If H has a vertex adjacent to x_{2}, then as above we have $V(H) \subseteq N\left(x_{2}\right)$. This implies that $V(H) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ or $V(H) \subset\left(N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)$.

Now suppose $|V(H)|=2$ and let $V(H)=\{x, y\}$. We have $x x_{1} \in E(G)$. If $y x_{1} \in E(G)$, then by assumption we must have $V(H) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ or $V(H) \subset\left(N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)$. Let $y x_{1} \notin E(G)$. Since $d_{G}\left(v_{1}, y\right)=2$, we must have $y x_{2} \in E(G)$. It follows from assumption that $x x_{2} \notin E(G)$. Then $V(G)-\left\{x_{1}, y\right\}$ is a $g(G)$-set which contradicts the choice of S.

If H_{1} and H_{2} are components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1}, such that $V\left(H_{1}\right) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ and $V\left(H_{2}\right) \subset\left(N\left(x_{2}\right)-N\left(x_{1}\right)\right)$, then $d_{G}\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)=3$ which contradicts our assumption. Thus for every component K of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1}, we have $V(K) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ or $V(H) \subset\left(N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)$. Let $K_{n_{1}}, \ldots, K_{n_{r}}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1} such that $V\left(K_{n_{j}}\right) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ for $1 \leq j \leq r$ and let $K_{m_{1}}, \ldots, K_{m_{s}}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1} such that $V\left(K_{m_{j}}\right) \subset$ $\left(N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)$ for $1 \leq j \leq s$. It follows that $G \in \mathcal{F}_{3}$.

Now let $G-\left\{x_{1}, x_{2}\right\}$ has exactly one component H of order at least 2 with $z \in V(H)$ such that $z \in N\left(x_{1}\right) \cap$ $N\left(x_{2}\right)$ and $V(H)-\{z\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$ or $V(H)-\{z\} \subseteq N\left(x_{2}\right)-N\left(x_{1}\right)$. We may assume, without loss of generality, that $H=H_{u_{1}}$ and $V\left(H_{u_{1}}\right)-\left\{u_{1}\right\} \subseteq N\left(x_{1}\right)-N\left(x_{2}\right)$. An argument similar to that described above shows that for any component $H \neq H_{u_{1}}$, either $V(H) \subset N\left(x_{1}\right) \cap N\left(x_{2}\right)$ or $\left.V(H) \subset N\left(x_{1}\right)-N\left(x_{2}\right)\right)$. Let $H_{u_{1}}=K_{m}, K_{n_{1}}, \ldots, K_{n_{r}}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1} such that $V\left(K_{n_{j}}\right) \subset\left(N\left(x_{1}\right)-N\left(x_{2}\right)\right)$ for $1 \leq j \leq r$ and let $K_{m_{1}}, \ldots, K_{m_{s}}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ not containing u_{1}, v_{1} such that $V\left(K_{m_{j}}\right) \subset\left(N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)$ for $1 \leq j \leq s$. It follows that $G \in \mathcal{F}_{2}$.
Case 2. $\left|\left\{u_{1}, v_{1}\right\} \cap\left\{u_{2}, v_{2}\right\}\right|=1$.
Let $u_{1}=u_{2}$ and $v_{1} \neq v_{2}$.
Subcase 2.1. $x_{1} x_{2} \notin E(G)$.
By the choice of S, we have $v_{1} x_{2} \notin E(G)$ and $v_{2} x_{1} \notin E(G)$. Since $\operatorname{diam}(G)=2, d\left(v_{1}, v_{2}\right) \leq 2$. If $d\left(v_{1}, v_{2}\right)=2$ and $w \in N\left(v_{1}\right) \cap N\left(v_{2}\right)$, then $w \notin\left\{x_{1}, x_{2}\right\}$ and the set $V(G)-\left\{x_{1}, x_{2}, w\right\}$ is a geodetic set of G which contradicts $g(G)=n-2$. Hence $v_{1} v_{2} \in E(G)$. Since $x_{1} x_{2} \notin E(G)$, we deduce that the cycle ($u_{1} x_{1} v_{1} v_{2} x_{2}$) has no chord. We claim that $n=5$. Suppose $n \geq 6$. Since G is connected, we may choose a vertex $w \in V(G)-\left\{u_{1}, x_{1}, v_{1}, v_{2}, x_{2}\right\}$ which is adjacent to a vertex in $\left\{u_{1}, x_{1}, v_{1}, v_{2}, x_{2}\right\}$. Suppose, without loss of generality, that $w u_{1} \in E(G)$. If $v_{1} w \in E(G)$ or $v_{2} w \in E(G)$, then $V(G)-\left\{x_{1}, x_{2}, w\right\}$ is a geodetic set of G which is a contradiction. Therefore $v_{1} w \notin E(G)$ and $v_{2} w \notin E(G)$. Since $d\left(v_{1}, w\right) \leq 2, w$ and v_{1} have a common neighbor, say y. If $y \neq x_{1}$, then $V(G)-\left\{x_{1}, x_{2}, y\right\}$ is a geodetic set of G which contradicts $g(G)=n-2$. Hence $N(w) \cap N\left(v_{1}\right)=\left\{x_{1}\right\}$. Similarly, we have $N(w) \cap N\left(v_{2}\right)=\left\{x_{2}\right\}$. Then $V(G)-\left\{v_{1}, u_{1}, w\right\}$ is a geodetic set of G which contradicts $g(G)=n-2$. Thus $n=5$ and so $G=C_{5}$.

Subcase 2.2. $x_{1} x_{2} \in E(G)$.
By the choice of S, we must have $v_{1} x_{2} \notin E(G)$ and $v_{2} x_{1} \notin E(G)$. Also, v_{1} and v_{2} are adjacent, for otherwise they have a common neighbor, say w, and $V(G)-\left\{x_{1}, x_{2}, w\right\}$ is a geodetic set of G, contradicting the assumption $g(G)=n-2$. Let $S^{\prime}=V(G)-\left\{v_{1}, x_{2}\right\}$. Clearly, S^{\prime} is a $g(G)$-set. Setting $u_{1}^{\prime}=u_{2}^{\prime}=x_{1}$ and $v_{1}^{\prime}=v_{2}^{\prime}=v_{2}$, we obtain $\left|\left\{u_{1}^{\prime}, v_{1}^{\prime}\right\} \cap\left\{u_{2}^{\prime}, v_{2}^{\prime}\right\}\right|=2$ that contradicts the choice of S. Thus this case is impossible.

Case 3. $\left|\left\{u_{1}, v_{1}\right\} \cap\left\{u_{2}, v_{2}\right\}\right|=0$.
By the choice of $S, u_{1} x_{2}, v_{1} x_{2}, u_{2} x_{1}, v_{2} x_{1} \notin E(G)$. Since $\operatorname{diam}(G)=2, d\left(u_{1}, u_{2}\right) \leq 2$. If $d\left(u_{1}, u_{2}\right)=2$ and w is a common neighbor of u_{1}, u_{2}, then $V(G)-\left\{x_{1}, x_{2}, w\right\}$ is a geodetic set of G which is a contradiction. Hence $u_{1} u_{2} \in E(G)$. Similarly, we must have $v_{1} v_{2} \in E(G)$. Then clearly $V(G)-\left\{x_{1}, u_{2}, v_{2}\right\}$ is a geodetic set of G, a contradiction. Thus this case is impossible. This completes the proof.

Theorem 2.3. Let G be a connected graph of order n with $\operatorname{diam}(G)=3$. Then $g(G)=n-2$ if and only if $G \in \mathcal{F}_{4}$.

Proof. If $G \in \mathcal{F}_{4}$, then clearly $g(G)=n-2$, because every vertex of $V(G)-\{x, y\}$ is a simplicial vertex of G.
Let $g(G)=n-2$ and let $u x y v$ be a diametral path in G. Obviously $V(G)-\{x, y\}$ is a $g(G)$-set and $N(u) \cap N(y)=\{x\}$ and $N(v) \cap N(x)=\{y\}$. We claim that all components of $G-\{x, y\}$ are complete graphs. It follows from Proposition 1.4 that the components of $G-\{x, y\}$ not containing u and v are complete graphs. Now let H_{u} and H_{v} be the component of $G-\{x, y\}$ containing u and v, respectively.

If $g\left(H_{u}\right) \leq\left|V\left(H_{u}\right)\right|-2$ (the case $g\left(H_{v}\right) \leq\left|V\left(H_{v}\right)\right|-2$ is similar), then by Observation 1.3, we can choose a geodetic set S of H_{u} containing u and size $\left|V\left(H_{u}\right)\right|-1$ such that the vertex not in S, say a, belongs to a $w_{1}-w_{2}$ geodesic path where $w_{1}, w_{2} \in S$ and $d_{G}\left(w_{1}, w_{2}\right)=2$. Then obviously $V(G)-\{a, x, y\}$ is a geodetic set of G of size at most $n-3$ which is a contradiction. Hence $g\left(H_{u}\right) \geq\left|V\left(H_{u}\right)\right|-1$ and $g\left(H_{v}\right) \geq\left|V\left(H_{v}\right)\right|-1$ implying that H_{u} and H_{v} are complete graphs or join of K_{1} and at least two pairwise disjoint complete graphs.

Suppose H_{u} is not a complete graph. Then H_{u} is the join of K_{1} and at least two pairwise disjoint complete graphs. Then clearly u is the central vertex of H_{u}, otherwise the central vertex of H_{u}, say w, lies on some $u-w_{1}$ geodesic path implying that $V(G)-\{x, y, w\}$ is geodetic set of G which is a contradiction. Let z_{1} and z_{2} belong to different components of $H_{u}-\{u\}$. Then $d_{G}\left(z_{1}, z_{2}\right)=2$ and $u \in I\left[z_{1}, z_{2}\right]$. On the other hand, since $d_{G}(u, v)=3, z_{1} v \notin E(G)$. If $N(v) \cap N\left(z_{1}\right) \neq \emptyset$, then $z_{1}, x, y \in I[u, v]$ and so $V(G)-\left\{x, y, z_{1}\right\}$ is a geodetic set of G, a contradiction. Hence $N(v) \cap N\left(z_{1}\right)=\emptyset$. It follows that $d_{G}\left(z_{1}, v\right)=3$. Similarly, $d_{G}\left(z_{2}, v\right)=3$. If $z_{1} x^{\prime} y^{\prime} v$ is a diametral path in G, then obviously $u, z_{2} \notin\left\{x^{\prime}, y^{\prime}\right\}$. This implies that $V(G)-\left\{u, x^{\prime}, y^{\prime}\right\}$ is a geodetic set of G, a contradiction. Thus H_{u} is a complete graph. Now we claim that each vertex of H_{u} is adjacent to x. Assume to the contrary that some vertex of H_{u}, say w, is not adjacent to x. Since $d_{G}(u, v)=3, w v \notin E(G)$. If $N(v) \cap N(w) \neq \emptyset$, then $w, x, y \in I[u, v]$ and so $V(G)-\{x, y, w\}$ is a geodetic set of G, a contradiction. Therefore $N[v] \cap N[w]=\emptyset$ and hence $d_{G}(w, v)=3$. Let $w x^{\prime} y^{\prime} v$ be a diametral path in G. Since $w x \notin E(G)$, we have $x \neq x^{\prime}$. Then $x, y \in I[u, v]$ and $x^{\prime} \in I[w, v]$ that yields $V(G)-\left\{x, y, x^{\prime}\right\}$ is a geodetic set of G, a contradiction. Thus each vertex of H_{u} is adjacent to x. Similarly, H_{v} is a complete graph and every vertex of H_{v} is adjacent to y.

Now let H be a component of $G-\{x, y\}$ different from H_{u} and H_{v}. Since G is connected, we may assume, without loss of generality, that H has a vertex w_{1} which is adjacent to x. If H has a vertex w_{2} that is not adjacent to x, then $V(G)-\left\{x, y, w_{1}\right\}$ is a geodetic set of G, a contradiction. Thus all vertices of H are adjacent to x. Similarly, if a component of $G-\{x, y\}$ different from H_{u} and H_{v}, has a vertex that is adjacent to y, then all of its vertices must be adjacent to y.

Let $K_{n_{1}}, \ldots, K_{n_{r}}$ be the components of $G-\{x, y\}$ whose vertices are adjacent to $x, K_{m_{1}}, \ldots, K_{m_{s}}$ be the components of $G-\{x, y\}$ whose vertices are adjacent to y, and $K_{l_{1}}, \ldots, K_{l_{t}}$ (possibly there is no such component) be the components of $G-\{x, y\}$ whose vertices are adjacent to x and y. Thus $G \in \mathcal{F}_{4}$ and the proof is complete.

Acknowledgements The authors would like to thank anonymous referees for their remarks and suggestions that helped improve the manuscripts.

References

[1] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587-591.
[2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, North Holland, New York, 1976.
[3] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17-26.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39 (2002) 1-6.
[5] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58.
[6] G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52 (2002) 771-780.
[7] M.C. Dourado, F. Protti, D. Rautenbach and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Math. 310 (2010) 832-837.
[8] F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89-95.
[9] B. Kee Kim, The geodetic number of a graph, J. Appl. Math. \& Computing 16 (2004) 525-532.
[10] A.P. Santhakumarana and J. John, The connected edge geodetic number of a graph, SCIENTIA 17 (2009) 67-82.
[11] A.P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and forcing connected geodetic number of a graph, Discrete Appl. Math. 157 (2009) 1571-1580.
[12] A.P. Santhakumaran and S.V. Ullas Chandran, The edge geodetic number and cartesian product of graphs, Discuss. Math. Graph Theory 30 (2010) 55-73.
[13] A.P. Santhakumaran and S.V. Ullas Chandran, The 2-edge geodetic number and graph operations, Arabian J. Math. 1 (2012) 241-249
[14] L.-D. Tong, The (a, b)-forcing geodetic graphs, Discrete Math. 309 (2009) 1623-1628.
[15] L.-D. Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Appl. Math. 309 (2009) 1623-1628.
[16] F.-H. Wang, Y.-L. Wang and Jou-Ming Chang, The lower and upper forcing geodetic numbers of block-cactus graphs, European J. Oper. Res. 175 (2006) 238-245.
[17] D.B. West, Introduction to graph theory, (2rd edition), Prentice Hall, 2001.
[18] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin. 62 (2002) 3-15.

[^0]: 2010 Mathematics Subject Classification. 05C69
 Keywords. geodetic set, geodetic number
 Received: 08 December 2013; Accepted: 10 September 2014
 Communicated by Francesco Belardo
 This research was partially supported by the Research Office of Azarbaijan Shahid Madani University
 Email addresses: ha. ahangar@nit.ac.ir (Hossein Abdollahzadeh Ahangar), saeedkosari38@yahoo.com (Saeed Kosari),
 s.m.sheikholeslami@azaruniv.edu (Seyed Mahmoud Sheikholeslami), volkm@math2.rwth-aachen.de (Lutz Volkmann)

